
PROJECT A/B ECE4095

Wirelessly connected

smart meter
Final Report

Student

William Robertson

Supervisors

Dr. Ahmet Sekercioglu

Prof. Jean Armstrong

W Robertson 20771053

Page 2

Abstract

This document gives an overview of the development of a wirelessly connected smart

meter, and the details of how it satisfies the requirements set forth in the requirements

analysis. The core of the report is the method and results sections, which are broken up

into the hardware and software sides of the implementation. The hardware specification

goes into the details of the physical aspect of the project, discussing design choices and

implementation methods. The software specification explores the way the two main

components will interact with each other, and provides an overview of the required

functions of the devices. The results section discusses the effectiveness of the

implementation, and an overview of the final product. Appendices have been included

for completeness, which contain full listings of the source code for both devices in the

system, schematic diagrams, and PCB layouts.

W Robertson 20771053

Page 3

Contents

Abstract ... 2

Introduction ... 4

Background and Problem description .. 4

Method .. 5

Hardware ... 5

Measurement .. 5

Internet Relay .. 7

Software ... 8

Measurement .. 8

Internet Relay .. 10

Results ... 11

Measuring Hardware .. 11

Gateway ... 12

Web interface ... 12

Internet ... 13

Conclusion ... 13

Further work ... 14

Appendices ... 15

Schematic Diagrams ... 15

Measurement hardware .. 15

Voltage measurement circuit .. 17

Printed Circuit Board design .. 17

Source Code ... 17

Measuring board... 17

Queue handling scripts ... 22

W Robertson 20771053

Page 4

Introduction

Over the past few years’ the public have become increasingly aware of energy usage as

a key driver of greenhouse emissions, and nowhere more than Victoria, Australia is this

true. Victoria is home to the world’s most polluting power station – Hazelwood coal fired

power station which produces 1.58 megatonnes of carbon dioxide per terawatt-hour of

energy output1 – so a reduction of energy usage in Victoria will have a greater

contribution to reducing carbon output than most other places in the world.

Energy efficiency has become not only an important strategy for reducing impact on the

environment, but also a business strategy. Products touting their reduced energy

consumption have become commonplace, but without a way to measure the individual

impact of these devices it is difficult for consumers to differentiate between various

techniques of saving energy – they might ask, “Should I replace my incandescent lights

with CFL globes, or should I replace my old fridge?”.

The Victorian government has begun rollout of their own smart meter system to

households mostly in Melbourne, however many areas have yet to receive them and may

not even have a scheduled installation date, especially in more regional areas.

This report goes into the processes in the development of a smart energy meter

designed to be a low-cost interim device for areas which have not received their

government sponsored meters, and contains the specific details of the construction of the

system.

Background and Problem description

The fundamental purpose of the system is to measure power usage. Power is the product

of both voltage and current, so for an accurate measurement of power, both of these

values must be considered.

Measurement of voltage is relatively straightforward, as most microcontrollers contain

the necessary hardware to directly measure analogue voltage. The measurement of

current however poses a more challenging problem. There are several methods of

measuring current:

 Shunt resistor

 Hall effect sensors

 Current clamp

Each method has its own advantages and disadvantages. A shunt resistor is a very

common method, as it is extremely simple to implement and can provide very accurate

results. However, it is required to be placed in series with the device under test. This

posed a serious issue with the implementation, as although the system was to be tested in

a low-voltage environment, it was desirable for the system to be scaled up for

measurement at 240 volts. In addition to this, if the device was measuring high currents, a

very large power resistor would be needed which can be expensive and waste

significant amounts of power.

1 http://www.wwf.org.au/articles/feature34/

http://www.wwf.org.au/articles/feature34/

W Robertson 20771053

Page 5

Hall Effect sensors do not require the direct contact to the primary circuit that shunt

resistors do. This is extremely advantageous as electrical isolation between the circuit

under test and the measurement platform allows for current measurement in high voltage

applications, as well as being able to measure low voltage situations as well. Hall Effect

sensors however put out much smaller voltages and therefore require some kind of

amplification to be able to be measured accurately, although many commercially

available packages have this amplification built into them.

Current clamp sensors actually use a current transformer to induce a voltage from a

current passing through them, but are very similar in operation to Hall Effect sensors,

and have similar advantages and disadvantages. One main difference is that current

transformer based sensors are only able to measure AC waveforms. However, this is a

non-issue as all currents that need to be tested are AC. Another difference with these

current clamps is that they are able to be placed around a conductor without dismantling

the circuit, making installation much easier than that of a shunt resistor, or even a Hall

Effect sensor. Again, amplification circuitry is required by the measurement hardware

because of the small scale signal that is produced.

Method

Hardware

Measurement

At the core of the measurement hardware we have three main items:

 An ATXmega microcontroller

 An XBee wireless communication

 A Current clamp

The ATXmega microcontroller is a high powered device, with a large number of inputs

and outputs and various hardware functions such as dedicated pulse width modulation,

direct memory access architecture, analogue to digital conversion, digital to analogue

conversion, and support for various communication protocols including I2C, SPI, UART,

ISP, and JTAG. The use of an ATXmega microcontroller is a non-functional requirement,

and as such it is necessary to include in the design, despite being somewhat

overpowered for the particular application. In this light, a 6 pin header has also been

included, providing access to the 3.3v rail, GND rail, and the first four bits of the

microcontroller’s “PORT A”. These pins can be used on the microcontroller as ADC

inputs, which would allow further use of the same PCB as a general purpose wireless

ADC. In the final version of the board, some of these pins have been used to allow for

monitoring of voltage via an external circuit.

A shrouded 5x2 pin male header has been included on the PCB to allow the easy

connection of a JTAG debugging cable. This is used to program the firmware of the

ATXmega microcontroller as well as provide debugging function during the

development of the software.

W Robertson 20771053

Page 6

Various elements have been added to the design of the PCB to ease the debugging

process. These include:

 A bi-colour status LED allowing the microcontroller to indicate which state it in (ie

Green for OK, red for error, orange for warning)

 Four single colour LEDs which indicate the status of the XBee module.

 JTAG header mentioned above

For wireless communications a pair of XBee modules was selected. These devices were

chosen due to the simplicity of operation and their ability to operate in “transparent

mode” where the module can simply be passed serial data and it handles packet

formation, and retransmission of lost packets. Configuration of the modules is necessary

before use, and for this the digi supplied utility “X-CTU”2 was used. The devices need to

operate on the same channel of the 2.4GHz spectrum, must be a part of the same PAN

and must set the destination and source addresses respectively.

One issue with the implementation of the XBee system was that the device required a

very accurate USART baud rate. Initially while the ATXmega microcontroller was being

clocked at the full 32MHz calculation of the necessary clock division to achieve accurate

baud rates proved to be inaccurate enough that while the values had theoretically less

than 1% error (2% error is common with USART baud rates), in practice the baud rates

were off by enough that the microcontroller failed to communicate with the XBee module.

Fortunately when the processor clock speed was reduced to 2MHz the accuracy

improved dramatically and communication using calculated values was possible.

Another issue with the XBee on the measuring hardware was the power draw as when the

device transmits it draws a spike of power. The regulator was unable to supply the

necessary current to the wireless module, and thus it was not able to transmit. This

problem was fixed by the inclusion of a 47uF bypass capacitor which is able to provide

the module with the current it requires for transmission.

To be measured by the ADC on the microcontroller, the current to be measured must be

converted to a voltage. Different methods of conversion have been discussed in the

problem description section of this report. A current clamp was chosen as the

measurement device. Due to the small scale of signals that can be produced by these

amplification was necessary. By using the differential ADC of the ATXmega

microcontroller it was possible to use a built in programmable gain stage, which is

adjustable from 1x to 64x gain. The current clamp selected was the Seeed Studio SCT-

013-0303. This current clamp is able to measure between 0 - 30A and outputs a voltage

proportional to the measured current.

2 http://www.digi.com/support/productdetl.jsp?pid=3352&osvid=57&s=316&tp=5&tp2=0
3http://www.seeedstudio.com/depot/noninvasive-ac-current-sensor-30a-max-p-

519.html?cPath=84_91

W Robertson 20771053

Page 7

Internet Relay

The internet relay is designed to accept data wirelessly from the measurement hardware

and relay this information to the internet.

The main concern for the selection of the hardware for this was the 802.11b/g wireless

interface, as the other parts were relatively straightforward to find. On researching my

options, I found two main viable devices:

 Rabbit MiniCore RCM5600W

 A Linux capable device

The Rabbit microcontroller was a promising option, however it was quite expensive, and

was also unable to be coded in traditional C – development was in a proprietary

Dynamic C® environment.

On the other hand, a Linux capable device could be had quite cheaply, and development

was extremely flexible – mainly being based in C, but with the ability to install other

packages. The advantage of this would be the ability to not rely on closed, proprietary

code, while having access to many drivers for the hardware already. The specific device

chosen was a Linksys WRT54GSv1.1, which has distributions of OpenWRT router

firmware available for it. OpenWRT is a version of Linux designed specifically for

routers. The router needed to be modified to expose the built in serial ports to facilitate

the interface between the router and the wireless communication board, used to receive

data from the measurement hardware. Much time was spent debugging these serial

ports, as there was a peculiar quirk with certain versions of OpenWRT whereby the serial

ports were unable to receive any data, but were able to transmit fine. The device was

only required to receive serial transmissions this rendered the ports useless. Fortunately

the issue was found to be build specific, and by changing to a different version of

OpenWRT the problem was able to be solved.

Data is collected from the serial port by a script (see appendices for full listings), which

filters out any data that is not in the simple packet format using the Linux commands cat,

grep and sed. The filtered packets are then passed to another SH script which handles

the data queue. Each reading is added to a queue, and an index is incremented to keep

track of how many samples have been collected.

Once enough samples to warrant reporting have been collected, the queuing system

invokes another script, responsible for taking the queue and feeding the data to the

Google servers, clearing the queue and resetting the index. In this manner, each

separate function of the system is contained in its own script for easy debugging and

overall robustness.

W Robertson 20771053

Page 8

Software

Measurement

The role of the measurement hardware is to attach to the device under measurement,

detect the voltage and the current used by it, and then convert these into an

instantaneous power usage. This power usage measurement is transmitted to the serial

interface of the internet relay hardware wirelessly via an XBee module.

The role of the software in this device will be to control the flow of data from the ADC of

the microcontroller to the wireless module.

The program flows as follows:

Initialisation

• Set input and output ports

• Set status LED green

• Set up serial communications

• Set up ADCs

Perform ADC
Measurements

• Trigger individual ADCs

• Wait for conversion to finish

• Store the results in a buffer

DC Bias
removal

• Calculate the average value

• Subtract average value from each sample

RMS
Calculation

• RMS is calculated according to the formula:
√(∑(samples2)/number of samples)

Send data

• Data is formatted in a simple packet structure

• Then transmitted via USART to XBee module

Automatic
Gain Control

• Samples are analysed sequentially, and if values are too close to ±2048 (saturation of
ADC) the gain is lowered

• If values are using less than half the available resolution of the ADC, the gain is raised.

Delay

• Timed delay to save the hardware continually transmitting calculations

W Robertson 20771053

Page 9

Current and voltage measurements are made at roughly 12 kHz (ADC is clocked at 125

kHz, but there is some overhead while the data is stored, and it takes multiple clocks for

the measured values to settle). The stored data is then processed by the subsequent

functions of the hardware. To minimise power consumption during this stage, a transistor

has been placed in the voltage measuring circuit which enables and disables a voltage

divider dynamically, meaning that when a measurement is not being taken there is no

parasitic current draw from the voltage divider used to drop the voltage to within the

reference voltage.

The first alteration of the measured data is to remove any DC offset that is present.

Although filter capacitors have been placed in series with the inputs, there is still

significant DC offset measured by the ADC. If this were left in the samples, the RMS

calculation would be wildly inaccurate. The DC bias is removed in software by

calculating an average of the samples, then subtracting this average from each sample

one by one.

The root means square (RMS) of the waveform is then calculated with the formula

This is somewhat computationally expensive for the device to calculate as there is no

built in floating point processor on the ATXMega, and thus must be performed with

integer arithmetic. Fortunately the device is clocked sufficiently fast, and is able to

compute the RMS in a timely manner. By using a true RMS calculation rather than the

common Vp/√2 approximation we are able to accurately measure the power on non-

sinusoidally varying waveforms, such as switchmode power supplies, which are

becoming increasingly common in electronics. This RMS calculation is done for both the

voltage and current measurements.

Once the RMS has been calculated, the voltage and current values are multiplied

together and then transmitted wirelessly via the XBee module to the Internet relay

hardware. This is achieved by placing the value in a simple packet string, “rd:125.51” for

example, indicating 125.51mW of power being consumed.

Finally, the samples are analysed to check for cases where the gain of the amplifier on

the ADC should be changed. If samples with a magnitude of close to 2048 are found it is

likely that the ADC is saturated and is clipping the samples. In this case the gain of the

amplifier is reduced by a factor of two. However, in the opposite case, where the gain

needs to be increased the automatic gain correction algorithm detects if less than half of

the resolution of the ADC is being used (and thus if the gain is doubled, no clipping will

occur) the gain is increased by a factor of two. This mechanism allows for the maximum

resolution of the ADC to be in use at all times.

W Robertson 20771053

 Page

10

Internet Relay

There are three main functions of the internet relay:

1. Accept wireless communications from the measurement hardware

2. Store up to 24 hours worth of measurements in the case of internet access being

unavailable for a day.

3. Report measurements to the Google powermeter API, and handle all secure

communications

In order to wirelessly communicate with the measurement hardware, the router has been

outfitted with an XBee module, connected to the device’s serial port. When data is

received it is able to be accessed via the special device blocks available to the Linux

operating system. A program checks this for any received measurements, and stores

these measurements in a queue, waiting to be transmitted to Google. While the internet

is functioning normally, this queue is 60 records long as the communications to Google

can only occur at a maximum of once per 10 minutes. However, in the case that the

internet is down up to 8640 records must be stored.

The Google powermeter API is specific about what features are necessary to implement,

and even goes into detail about how they are to be implemented. For example, it

specifies that 24 hours of records must be kept, and that when 24 hours worth of samples

is reached that the oldest data is overwritten with the newest data, so that the device

keeps data for the most recent 24 hours. In order to achieve this, a helper script manages

the flow of data, accepting new data and discarding old data as it is replaced.

When the time comes to transmit the measurements to Google (once every 10 minutes)

the entire queue is sent and then cleared from the local memory once confirmation has

been received.

While using the Google powermeter API, the client (internet relay hardware) must have

authenticated with the Google servers to allow secure transmission of the measurement

data. This must be achieved by a web interface (as specified by Google4). This web

interface allows users to “activate” their power meter by signing into their Google

account. This interface then saves a security hash token specific to the user, allowing

secure communication between Google and the device, while never actually storing any

of the user’s data. This hash is then used to encrypt all communication allowing for

completely secure transmission of data.

The web interface also allows the user to view their power usage, update their account

details, as well as edit the network settings of the router.

4 http://code.google.com/apis/powermeter/docs/powermeter_device_activation.html

W Robertson 20771053

 Page

11

Results

Measuring Hardware

The measuring hardware has been designed to be somewhat transparent once set up in

the final system, communicating only with the gateway. There is no configuration

necessary, or indeed possible. In the final version of the hardware, the only output is the

wireless signal, sending a serial string, for example “rd:512.21” to represent 512.21mW

of power being used.

As can be seen by the above graph, the voltage measurements are relatively stable,

providing good accuracy, with only minor fluctuations from a pure sine wave. The largest

of these deviations is ~80mV, and when averaged over the entire waveform become a

very minor contributor to error, less than 1%.

However, it can be seen clearly that the AC signal has a ~1.1V DC offset, which is highly

undesirable. DC offsets were a problem that was designed around, with input series

capacitors being placed in the circuit in an attempt to mitigate the effects. It appears that

these capacitors were insufficient to remove the offset and as a result it needed to be

compensated for in software by calculating the average value of the waveform and

subtracting this average from each sample. This allows for the RMS to be calculated

accurately, but is only a stop-gap solution to the problem, as in worst case scenarios

where the voltage offset is large; it could lead to clipping of the waveform and thus

produce inaccurate RMS calculations. In order to mitigate the potential for this occurring,

a system for automatic gain control on the differential amplifiers has been put in place, as

described in the method section.

0

200

400

600

800

1000

1200

1400

1600

1800

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

ADC Voltage vs Time

ADC Voltage

W Robertson 20771053

 Page

12

Gateway

Web interface

The web interface is the end user’s sole

interaction with the system for configuration

and setup. It performs two main functions:

 Network configuration

 Device activation

On the network configuration page, the web

interface allows the user to configure the

wireless by entering the SSID, encryption type

and security key while they are connected to

the wired interface. This is achieved by the use

of a PHP script which can write the necessary

configuration to the /etc/config/network and

/etc/config/wireless files on the router’s filesystem. A troubleshooting page has also

been included which checks for internet connectivity by testing a connection to

www.google.com and reports to the user if this was successful or not.

The second function of the web interface is to perform the device activation. The device

can detect if it is currently activated, and if it is not, displays a button to provide users a

simple way to begin the process. When the button is clicked they are redirected to a

Google sign in page where their details are taken and the gateway is associated with the

account. From this point, a hash of the user’s details (no sign in information is stored on

the device for security) is stored, and the device is able to begin reporting of power

data.

Figure 1: One of the screens of the web interface

W Robertson 20771053

 Page

13

Internet

Once the data is sent off by the gateway, all of the heavy lifting of the data analysis is

handled by Google. For a simple demonstration of the capabilities of this system some

data has been generated and submitted. The data can be seen below:

As can be seen, a base “always on” load is highlighted, and any power on top of this is

drawn in a lighter colour. In addition to this various usage statistics have been included,

such as total power usage, estimated costs and the ability to view historical data.

Conclusion

At the conclusion of this semester I have been successful in implementing the goals set

forth in the requirements analysis. These are be listed below and will be described with

respect to the level of completion achieved.

Must measure AC current

By the use of the current clamp and differential ADC in the microprocessor, the system is

fully able to measure AC current.

Must transmit this current measurement to a ‘base station’ wirelessly

Measurements are transmitted via the XBee modules using the IEEE 802.15.4 protocol

wirelessly and received by the gateway unit.

Must relay electrical power usage information to the Google Powermeter API

The gateway unit connects to the internet and is able to send power data to Google via

this API, once the device has been associated with a Google account.

W Robertson 20771053

 Page

14

Current measuring device must be low power

This non-functional requirement has been further specified as a measurable goal – the

device is to consume less than 150mW of power. When supplied by 5V, the device

consumes 63mA for a total power consumption of 315mW. Unfortunately this does not

meet the design requirements – however 51.5mA of the 63mW is due to the XBee. This

alone consumes 257.5mW of power. This power could have been saved by the inclusion

of a MOSFET or transistor to disable the XBee while not in use, and further power could

have been saved by utilising the sleep mode of the microcontroller.

Must be able to measure a variety of currents

The device must be able to measure currents from 0A to at least 10A. The current clamp I

have selected for use is capable of measuring currents between 0 and 30A, and in

conjunction with the variable gain on the ADC, the entire range of currents is able to be

measured.

Must be as accurate as possible

An accuracy of 5% was specified by the requirements analysis. As demonstrated in the

results section of the report, the ADC does have minor errors where individual samples

can have errors of up to 6%. However, these occur very infrequently (less than 10 of the

total 235 samples have a significant deviation), and thus when the RMS is calculated these

errors become insignificant, less than 1% of the total power.

Must not directly come into contact with 240V AC mains

Through the use of the current clamp, non-invasive measurements of current are able to

be taken. However the device has since been re-targeted at a 12V AC application and is

able to measure the voltage safely by the use of a voltage divider.

Further work

Several options for further work could be considered. Exploration of power saving

methods to minimise consumption of device is the obvious choice, as unfortunately that

aspect of the design requirement was unable to be fulfilled.

Integration of the power supply of measuring device into connection to AC mains could

also be considered, however this violates one of the design requirements of this project

in that it would need direct contact to 240V AC mains. One benefit of this could be the

ability of the measuring hardware to turn the device on or off under certain conditions –

malfunctioning devices could be shut down before damage is done, or power hungry

devices could be rationed based on their energy usage.

The ability to connect multiple measuring devices to a single gateway could also be a

desirable trait, where different sections of a house could be measured, or in fact

individual devices could be measured.

Device profiling could also be performed based on energy signatures put forward by the

device. For example it may be possible to identify something like a fridge compressor

turning on and if it turns on frequently it may indicate an inefficient device.

W Robertson 20771053

 Page

15

Appendices

Schematic Diagrams

Measurement hardware

W Robertson 20771053

 Page

16

W Robertson 20771053

 Page

17

Voltage measurement circuit

Printed Circuit Board design

Source Code

Measuring board

#define F_CPU 2000000UL

#include <avr/io.h>

#include <stdio.h>

#include <math.h>

#include <util/delay.h>

#define NUM_SAMPLES 235 // Number of samples required to capture

exactly one cycle of 50Hz

int16_t buffer[NUM_SAMPLES];

int16_t voltage[NUM_SAMPLES];

W Robertson 20771053

 Page

18

char serialstring[20];

enum statuses {

 RED,

 GREEN,

 ORANGE

};

void set_status(enum statuses status) {

 switch(status) {

 case RED:

 PORTC.OUT = 0x01;

 break;

 case GREEN:

 PORTC.OUT = 0x02;

 break;

 case ORANGE:

 PORTC.OUT = 0x00;

 break;

 }

}

void usart_write(unsigned char data) {

 USARTF0.DATA = data;

 if(!(USARTF0.STATUS&USART_DREIF_bm))

 while(!(USARTF0.STATUS & USART_TXCIF_bm)); // wait for TX

complete

 USARTF0.STATUS |= USART_TXCIF_bm; // clear TX

interrupt flag

};

void send_string(char* string, int len) {

 int i = 0;

 while(string[i] != '\0' && i<len) {

 usart_write(string[i]);

 i++;

 }

};

void set_clock_32m(void) {

 CCP = CCP_IOREG_gc;

 OSC.CTRL = OSC_RC32MEN_bm;

 while(!(OSC.STATUS & OSC_RC32MRDY_bm));

 CCP = CCP_IOREG_gc;

 CLK.CTRL = 0x01;

};

int abs (int i) {

 return i < 0 ? -i : i;

}

int main() {

 int i;

 int gain = 1;

 int gaincontrol = 0;

W Robertson 20771053

 Page

19

 /* INIT SECTION */

 PORTC.DIR = 0x03; // configure PORTC[1:0] as output

 set_status(GREEN);

 /* SET UP USART */

 PORTF.DIR |= (1<<3); // set TX pin as output

 PORTF.OUT |= (1<<3); // set PORTF[3] high

 USARTF0.BAUDCTRLA = 11&0xFF;

 USARTF0.BAUDCTRLB = (-7<<4) | (11>>8); // 115.1kbps (0.5%

error)

 USARTF0.CTRLB = USART_TXEN_bm | USART_RXEN_bm; // enable tx

and rx on USART

 /* SET UP ADC */

 ADCB.CTRLA |= 0x1; // enable adc

 PORTB.DIR = 0x00;

 ADCB.CTRLB = 0x10 | ADC_RESOLUTION_12BIT_gc; // 12 bit signed

conversion (pos 11bits)

 ADCB.REFCTRL = ADC_REFSEL_AREFB_gc; // use external reference

 ADCB.PRESCALER = ADC_PRESCALER_DIV16_gc;

 ADCB.CH0.CTRL = ADC_CH_INPUTMODE_DIFFWGAIN_gc |

ADC_CH_GAIN_1X_gc;

 ADCB.CH0.MUXCTRL = ADC_CH_MUXPOS_PIN1_gc |

ADC_CH_MUXNEG_PIN4_gc;

 ADCA.CTRLA |= 0x1; // enable adc

 PORTA.DIR = 0x08;

 ADCA.CTRLB = 0x10 | ADC_RESOLUTION_12BIT_gc; // 12 bit signed

conversion (pos 11bits)

 ADCA.REFCTRL = ADC_REFSEL_AREFB_gc; // use external reference

 ADCA.PRESCALER = ADC_PRESCALER_DIV16_gc;

 ADCA.CH0.CTRL = ADC_CH_INPUTMODE_DIFF_gc;

 ADCA.CH0.MUXCTRL = ADC_CH_MUXPOS_PIN2_gc |

ADC_CH_MUXNEG_PIN1_gc;

 /* MAIN LOOP */

 while(1) {

 double average = 0.0;

 /* FILL BUFFER WITH ADC DATA */

 for(i=0; i<NUM_SAMPLES; i++) {

 PORTA.OUT = 0x08; // Enable voltage divider on input

 ADCB.CH0.INTFLAGS |= 1; // Clear interrupt flag

 ADCA.CH0.INTFLAGS |= 1; // Clear interrupt flag

 ADCB.CTRLA |= (1<<2); // Start single conversion

 ADCA.CTRLA |= (1<<2); // Start single conversion

 while(!ADCB.CH0.INTFLAGS);

 buffer[i] = ADCB.CH0RES;

 while(!ADCA.CH0.INTFLAGS);

 buffer[i] = ADCA.CH0RES;

 PORTA.OUT = 0x00; // Disable voltage divider on

input

 }

 for(i=0;i<NUM_SAMPLES;i++){

W Robertson 20771053

 Page

20

 if(abs(buffer[i]) > 2040) {

 // ADC has been saturated

 gaincontrol -= 1;

 }

 average += buffer[i];

 snprintf(serialstring, sizeof(serialstring), "%d,",

buffer[i]);

 send_string(serialstring, sizeof(serialstring)); //

write string

 }

 average /= NUM_SAMPLES;

 /* PERFORM RMS CALCULATION */

 double accumulator = 0.0;

 double voltage_acc = 0.0;

 for(i=0; i<NUM_SAMPLES; i++) {

 accumulator += pow(buffer[i]-average,2);

 voltage_acc += pow(voltage[i],2);

 }

 accumulator = sqrt(accumulator/NUM_SAMPLES);

 voltage_acc = sqrt(voltage_acc/NUM_SAMPLES);

 voltage_acc /= 1000; // Convert to voltage

 if(M_SQRT2*accumulator+abs(average) < 1000) {

 // Less than half of the resolution is being used

 gaincontrol += 1;

 }

 /* SEND VALUE */

 snprintf(serialstring, sizeof(serialstring), "rd:%.2f\n",

voltage_acc*accumulator/gain);

 send_string(serialstring, sizeof(serialstring)); // write

string

 /* PERFORM GAIN CONTROL, IF NECESSARY */

 if(gaincontrol) {

 snprintf(serialstring, sizeof(serialstring), "g =

%d, gc = %d\n", gain, gaincontrol);

 send_string(serialstring, sizeof(serialstring)); //

write string

 switch(gain) {

 case 1:

 if(gaincontrol>0) {

 gain = 2;

 ADCB.CH0.CTRL =

ADC_CH_INPUTMODE_DIFFWGAIN_gc | ADC_CH_GAIN_2X_gc;

 }

 break;

 case 2:

 if(gaincontrol>0) {

 gain = 4;

 ADCB.CH0.CTRL =

ADC_CH_INPUTMODE_DIFFWGAIN_gc | ADC_CH_GAIN_4X_gc;

W Robertson 20771053

 Page

21

 } else {

 gain = 1;

 ADCB.CH0.CTRL =

ADC_CH_INPUTMODE_DIFFWGAIN_gc | ADC_CH_GAIN_1X_gc;

 }

 break;

 case 4:

 if(gaincontrol>0) {

 gain = 8;

 ADCB.CH0.CTRL =

ADC_CH_INPUTMODE_DIFFWGAIN_gc | ADC_CH_GAIN_8X_gc;

 } else {

 gain = 2;

 ADCB.CH0.CTRL =

ADC_CH_INPUTMODE_DIFFWGAIN_gc | ADC_CH_GAIN_2X_gc;

 }

 break;

 case 8:

 if(gaincontrol>0) {

 gain = 16;

 ADCB.CH0.CTRL =

ADC_CH_INPUTMODE_DIFFWGAIN_gc | ADC_CH_GAIN_16X_gc;

 } else {

 gain = 4;

 ADCB.CH0.CTRL =

ADC_CH_INPUTMODE_DIFFWGAIN_gc | ADC_CH_GAIN_4X_gc;

 }

 break;

 case 16:

 if(gaincontrol>0) {

 gain = 32;

 ADCB.CH0.CTRL =

ADC_CH_INPUTMODE_DIFFWGAIN_gc | ADC_CH_GAIN_32X_gc;

 } else {

 gain = 8;

 ADCB.CH0.CTRL =

ADC_CH_INPUTMODE_DIFFWGAIN_gc | ADC_CH_GAIN_8X_gc;

 }

 break;

 case 32:

 if(gaincontrol>0) {

 gain = 64;

 ADCB.CH0.CTRL =

ADC_CH_INPUTMODE_DIFFWGAIN_gc | ADC_CH_GAIN_64X_gc;

 } else {

 gain = 16;

 ADCB.CH0.CTRL =

ADC_CH_INPUTMODE_DIFFWGAIN_gc | ADC_CH_GAIN_16X_gc;

 }

 break;

 case 64:

 if(gaincontrol<0) {

 gain = 32;

 ADCB.CH0.CTRL =

ADC_CH_INPUTMODE_DIFFWGAIN_gc | ADC_CH_GAIN_32X_gc;

W Robertson 20771053

 Page

22

 }

 break;

 }

 gaincontrol = 0;

 }

 _delay_ms(10000);

 }

}

Queue handling scripts

Readserial.sh – Responsible for reading and filtering serial data

#!/bin/sh

{

 while read line; do

 line_filtered=`echo -e "$line\n" | grep "^rd:[0-9]"

| sed "s_rd:__"`

 size=`echo $line_filtered | wc -c`

 if test $size -gt 1; then

 echo "`date '+%Y-%M-%d %H:%M:%S'`

./adddata.sh $line_filtered"

 ./adddata.sh $line_filtered

 fi

 done

} < /dev/tts/0

Adddata.sh – responsible for queuing reported variables

#!/bin/sh

if ! test -d ~/powerdata

then

 mkdir ~/powerdata

fi

if test -f ~/powerdata/index

then

 INDEX=`cat ~/powerdata/index`

else

 echo "No index found, creating one."

 INDEX=1

 echo $INDEX > ~/powerdata/index

fi

echo -e "`date "+%s"`\t$1" >> ~/powerdata/queue.txt

if test $INDEX -eq 60

then

 #sh ~/report.sh

 echo "Index = 60, reporting and reseting index"

 echo 1 > ~/powerdata/index

else

 echo "Index != 60, bumping index"

 echo `expr $INDEX + 1` > ~/powerdata/index

W Robertson 20771053

 Page

23

fi

Report.sh – responsible for calling the Google Powermeter API

#!/bin/sh

TOKEN=`cat ~/token`

VARIABLE=`cat ~/variable`".c1"

python ~/google-powermeter-api/post_readings_devices.py $TOKEN

$VARIABLE --split_on_tab --time_column=1 --reading_column=2 <

~/powerdata/queue.txt

rm ~/powerdata/queue.txt

Web interface

Account.php

<?php

include('header.php');

echo(" <h1>Account Setup</h1>\n");

if($loggedin) {

 echo(" Your device is currently activated. If you would like to

de-activate the device, please click the button below.
\n");

 echo(" <form action=\"deactivate.php\">\n");

 echo(" <input type=\"submit\" value=\"De-activate

device\">\n");

 echo(" </form>\n");

} else {

 $snonce = rand(0,255);

 $fd = fopen('/tmp/snonce', 'w');

 fwrite($fd, $snonce);

 fclose($fd);

 $rurl = "http://" . "192.168.0.50" . "/rurl.php";

 echo(" This device has not yet been activated - please click

the button to begin the activation process.
\n");

 echo(" <form

action=\"https://www.google.com/powermeter/device/activate\"

method=\"get\">\n");

 echo(" <input type=\"hidden\" name=\"mfg\"

value=\"monash\">\n");

 echo(" <input type=\"hidden\" name=\"model\"

value=\"powermeter_v1\">\n");

 echo(" <input type=\"hidden\" name=\"did\" value=\"1\">\n");

 echo(" <input type=\"hidden\" name=\"cvars\"

value=\"1\">\n");

 echo(" <input type=\"hidden\" name=\"snonce\"

value=\"$snonce\">\n");

 echo(" <input type=\"hidden\" name=\"rurl\"

value=\"$rurl\">\n");

W Robertson 20771053

 Page

24

 echo(" <input type=\"submit\" value=\"Activate Device\">\n");

 echo(" </form>\n");

}

echo(" Google

PowerMeter Privacy Policy
\n");

include('footer.php');

?>

Deactivate.php

<?php

include('header.php');

if(isset($_POST[doit])) {

 $doit = $_POST[doit];

 if(strcmp($doit,"no")) {

 unlink('/root/token');

 echo(" <h1>De-activate your device</h1>\n");

 echo(" Your device is now de-activated. Should you wish to

being reporting power usage data again, simply re-activate the

device.
\n");

 }

} else {

 echo(" <h1>De-activate your device</h1>\n");

 echo(" Are you sure you want to de-activate your device? It

will no longer record any power usage data until you re-

activate.

\n");

 echo(" <form action=\"$_SERVER[PHP_SELF]\"

method=\"post\">\n");

 echo(" <input type=\"hidden\" name=\"doit\"

value=\"yes\">\n");

 echo(" <input type=\"submit\" value=\"Yes, de-activate my

device\">\n");

 echo(" </form>\n");

 echo(" <form action=\"/cgi-bin/index.php\">\n");

 echo(" <input type=\"submit\" value=\"No, leave my device as

it is\">\n");

 echo(" </form>\n");

}

include('footer.php');

?>

Footer.php

<?php

W Robertson 20771053

 Page

25

echo(" </div>

 <p class=\"footer\">© 2010 Will Robertson.</p>

 <div class=\"logo\"> </div>

 </body>

</html>");

?>

Header.php

<?php

$loggedin = file_exists('/root/token');

if($loggedin) {

 $token = file_get_contents('/root/token', false);

}

echo("<html>

 <head>

 <title>Monash Powermeter Web UI</title>

 <link rel=\"stylesheet\" href=\"/resources/style.css\"

type=\"text/css\" media=\"screen\">

 </head>

 <body>

 <div id=\"heading\">

 </div>

 <div id=\"menu\">

 Home | Account

Setup </div>

 <div id=\"content\">

");

?>

Index.php

<?php

include('header.php');

echo(" <h1>Monash Powermeter</h1>");

echo(" <p>Welcome to the Monash Powermeter web

interface.

\n");

if($loggedin) {

 echo(" The device is currently activated, and will report

energy usage.
\n");

 if(file_exists('/root/lasttime')) {

 echo(" Last communication of data: ");

 echo(file_get_contents('/root/lasttime'));

 } else {

 echo("Data has not yet been reported. If you've only just

activated the device, this is to be expected.
\n");

W Robertson 20771053

 Page

26

 echo("However if it has been more than 15 minutes since you

activated the device, you may wish to troubleshoot the device
\n");

 }

} else {

 echo(" You are not currently logged in. Click here to get started!</p>\n");

}

include('footer.php');

?>

Rurl.php

<?php

include("header.php");

echo(" <h1>Device activation</h1>\n");

if(file_exists('/tmp/snonce')) {

 $snonce = file_get_contents('/tmp/snonce');

 if($snonce == $_REQUEST[snonce]) {

 $token = $_REQUEST[token];

 $variable = $_REQUEST[path];

 $fd = fopen('/root/token', w);

 fwrite($fd, $token);

 fclose($fd);

 $fd = fopen('/root/variable', w);

 fwrite($fd, $variable);

 fclose($fd);

 echo(" Congratulations!
\n");

 echo(" Your device has been successfully activated, and can

now begin reporting power usage information to your Google

account.

\n");

 echo(" For some great energy saving tips to help you lower

the cost of your bill and your impact on the environment, visit the

Save Energy website by clicking here.
\n");

 } else {

 echo(" Secure nonce response does not match sent value --

potential third party or replay attack! Aborting.
\n");

 }

} else {

 echo(" Secure nonce file not present -- security of connection

impossible to determine; aborting.
\n");

}

include("footer.php");

W Robertson 20771053

 Page

27

?>

Troubleshoot.php

<?php

include('header.php');

echo(" <h1>Troubleshooting</h1>\n");

$connection = fopen("http://www.google.com", 'r');

if($connection) {

 $connected = true;

 fclose($connection);

} else {

 $connected = false;

}

echo(" Internet connection
\n");

if($connected) {

 echo(" Connection to the internet is functional.
\n");

} else {

 echo(" Unable to contact google.com -- internet connection may

be unavailable. ");

}

include('footer.php');

?>

